The following terms and acronyms are used in this handbook.

A-D: Analog to digital.

CCD: Charge-coupled device. Solid-state, light detecting device.

CDBS: Calibration Data Base. System for maintaining reference files and tables used to calibrate HST observational datasets.

CIT: California Institute of Technology.

COBE: Cosmic Background Explorer.

COSTAR: Corrective Optics Space Telescope Axial Replacement.

CP: Call for Proposals.

CR: Cosmic ray.

CVZ: Continuous viewing zone.

DQ: Data quality.

DQE: Detector quantum efficiency.

DN: Data number.

ETC: Exposure Time Calculator.

FAQ: Frequently asked questions.

FGS: Fine Guidance Sensors.

FITS: Flexible Image Transport System. A generic IEEE- and NASA-defined standard used for storing image data.

FOC: Faint Object Camera.

FOM: Field Offset Mirror (or mechanism)

FOS: Faint Object Spectrograph.

FOV: Field of view.

FPA: Focal plane array.

FSW: Flight software.

FTP: File Transfer Protocol. Basic tool used to retrieve files from a remote system. Ask your system manager for information about using FTP.

FUV: Far ultraviolet.
FWHM: Full width at half maximum.

GASP: Guide Star Astrometric Support Program.

GEIS: Generic Edited Information Set. The multigroup format used by STSDAS for storing some HST image data.

GHRS: Goddard High-Resolution Spectrograph.

GO: General Observer.

GTO: Guaranteed Time Observer.

HSP: High-Speed Photometer.

HST: Hubble Space Telescope.

ICD: Interface control document. Defines data structures used between software or systems to ensure compatibility.

IDT: Instrument Development Team.

IR: Infrared.

IRAF: Image Reduction and Analysis System. The system on which STSDAS is built.

IUE: International Ultraviolet Explorer.

K: Degree Kelvin.

LSF: Line spread function.

MOS: Multi-object spectroscopy.

ND: Neutral density.

NICMOS: Near-Infrared Camera and Multi-Object Spectrograph.

NUV: Near ultraviolet.

OPUS: OSS and PODPS Unified Systems.

OSS: Observation Support System.

OTA: Optical Telescope Assembly.

PAM: Pupil Alignment Mirror (or mechanism).

PI: Principal investigator.

PODPS: Post-Observation Data Processing System.

PSF: Point spread function.

QE: Quantum efficiency.

RA: Right ascension.

rms: Root mean square.

SAM: Small angle motion.

SLTV: System level thermal vacuum (testing phase).

SMOV: Servicing Mission Orbital Verification.

S/N: Signal-to-noise ratio.

SSR: Solid state recorder.
ST-ECF: Space Telescope European Coordinating Facility.

STEIS: Space Telescope Electronic Information System. The World Wide Web host from which information, software, documentation, and other resources pertaining to the HST can be obtained.

STIS: Space Telescope Imaging Spectrograph.

STScI: Space Telescope Science Institute.

STSDAS: Space Telescope Science Data Analysis System. The complete suite of data analysis and calibration routines used to process HST data.

SV: Science verification. Process of taking observations that can be used for HST instrument calibration.

TAC: Telescope Allocation Committee.

TEC: Thermal electrically cooled.

URL: Uniform resource locator. Address for WWW.

UV: Ultraviolet.

VCS: Vapor cooled shield.

WF/PC: Wide Field/Planetary Camera.

WWW: World Wide Web. Hypertext-oriented method for finding and retrieving information over the Internet.

YSO: Young stellar object.
Glossary
Appendix

In This Appendix...

Bright Object Mode / 261
Ramp Mode / 263

Bright Object Mode

The time taken to read through a quadrant on the array sets a fundamental limit on the fastest electron collection rate which can be achieved by resetting all the pixels. An inherent consequence of the methods of operating the NICMOS array detectors in the ACCUM, MULTIACCUM, and RAMP modes is therefore that there is a minimum possible exposure time, ~ 0.6 seconds (0.302 for MULTIACCUM), set by the time required to read the array. For a very bright object, such as the disk of Jupiter, the time between the reset of a pixel, and its final read is sufficiently long that the pixel saturates. Although the detector arrays are multiplexed by division into four quadrants, each pixel in a 128 x 128 pixel quadrant must be sampled in some order (note that there is no transfer of charge as is done in a CCD).

The solution adopted to this problem for NICMOS is the provision of a bright object mode which enables targets to be observed which are ~600 times brighter than is possible in the other modes without saturating. In BRIGHTOBJ mode, an ACCUM sequence of operations is performed on one pixel in each quadrant at a time. That is, the pixel is reset, read, integrated, and read again with the difference between the final and initial readouts being stored as the measured signal and the interval between the reads being the exposure time. This process is repeated sequentially for all pixels in each quadrant. Users can think of this as integrating on a single pixel at a time. The smallest integration time which can be used is 1.024 milliseconds. Figure 15.1 illustrates the operation of bright object mode. Initially the detector is reset and the first pixel (solid shading) in each quadrant is read. A reset is then made and the second pixel in each quadrant is read. The process continues until all 16,384 pixels in each quadrant have been read.
The time required to take a BRIGHTOBJ mode exposure can be rather long. Since photons are only collected in one pixel per quadrant at a time, the time associated with obtaining the frame is \(0.206 + (EXPTIME \times 16384)\) where \(EXPTIME\) is the integration time per pixel (i.e. the observation time is approximately \((128^2)\) x the exposure time). For example, if an integration time of 0.1 seconds is used to observe a bright target then the actual time required to complete the observation would be around 27 minutes! This means that allowing for acquisition time only two such exposures could be obtained in a single target visibility period. However, it is not always so serious. In the case of Jupiter for example the integration times required per pixel are only of the order of milliseconds and so the total integration time will only be around 20 seconds.

The longest exposure time which is possible in BRIGHTOBJ mode is 0.261 seconds, requiring 4278 seconds in total. Thus it is possible, in the worst case, for a single BRIGHTOBJ mode exposure to use more than an orbit. In general observers are strongly advised to consider the trade-off between relatively long BRIGHTOBJ mode exposures (which take the longest time) and short ACCUM
Ramp Mode exposures (perhaps using a filter and camera combination with lower throughput).

One of the obvious uses of BRIGHTOBJ mode is for solar system targets. Due to the limitations of the Track 51 capability (linear tracking with orbital or planetary parallax correction) HST can only follow a moving target for 2048 seconds, of which 1980 seconds is available for an exposure. This therefore sets the longest integration time that is possible for a moving target in BRIGHTOBJ mode. Proposers will need to judge the real integration time and signal to noise ratio required for the observation time and adjust accordingly.

The advantage of this mode of operation is the ability to observe objects significantly brighter than the normal saturation limit of the detector.

The disadvantages are several:

- Due to the extremely large time penalties involved in this mode operation, it cannot be used to accomplish time resolved observations on shorter time intervals than ACCUM mode.
- Some observations will take a long time. BRIGHTOBJ mode exposures are therefore very sensitive to the quality of the pointing of HST. They should not be obtained using GYRO guiding mode. In addition, if the object changes (planetary rotation) or if the telescope pointing changes it will affect different parts of the image differently.
- The D.C. offset of the detector output is not removed in this mode of operation. In general, the signal is very high and the offset does not matter. In some cases it will and this can be a detriment to the signal accuracy.
- There is also no cosmic ray correction or saturation detection in this mode of operation. Although they are still susceptible to cosmic rays, events should be very rare as the integration time per pixel is very short.

Ramp Mode

The RAMP mode is an intrinsically different way of obtaining an image which can be thought of as an on-board hybrid between ACCUM and MULTIACCUM, providing a limited version of the advantages we described for MULTIACCUM with the simplicity of ACCUM, producing a single output image at the end of the exposure. RAMP mode is appropriate when high dynamic range or cosmic ray cleaned observations are required but the data volume is constrained. The basic ideas behind the RAMP mode are illustrated in Figure 7.4.

RAMP mode has not been tested on-orbit, and no plans exist for its validation. Given the proven capability of MULTIACCUM and the solid state recorder which effectively alleviates data rate concerns, RAMP is not believed to be useful.
As in the case of the MULTIACCUM mode, in RAMP mode the initial detector readout, which obtains the initial pixel values, is followed by a number, NSAMP, of non-destructive readouts, up to a maximum of 254. Both the integration time T and the number of passes NSAMP are set by the observer in the proposal. Unlike the readouts of MULTIACCUM the intermediate readouts in RAMP mode must be at equal intervals during the exposure and are not individually downlinked to the ground. The integration time is the time between the initial non-destructive read of the first pixel and the last non-destructive read of the first pixel. If T is the total integration time the sub-reads occur at intervals of T/NSAMP. As illustrated in Figure 7.5, each of the ramp samples are formed by taking the difference between the cumulative signal recorded after the current read and that obtained at the previous read.
Figure A.3: The On-Board Ramp Mode Calculations

Each readout is differenced ONBOARD with the previous readout and used to compute a running mean of the # of counts per sample interval, t, and an associated variance for each pixel.

\[\bar{y} = \frac{1}{6} \sum_{i=1}^{6} y_i \]

Mean countrate image

+ variance image

+ # valid samples image

Integration time = t

The time taken to perform the ramp calculation is ~7 seconds per camera and this sets the minimum time between successive ramp samples. Thus if 3 cameras are in use in ramp mode this restriction expands to > 21 seconds (there are other overheads involved). Ramp mode produces three data arrays; the image which contains the mean values of the slope or ramp of each pixel derived from the
difference images; the number of samples which were used to determine the slope, and the variance over all the samples used in the calculation of the image.¹

The aware reader will have realized that if all the difference images are used to form this final mean the output of RAMP mode will be identical to that of an ACCUM for a time T/NSAMP. However, the great power of RAMP mode is that during the calculation of the slope it is also possible to detect pixel saturation and optionally cosmic rays, but not without penalties as we will explain shortly. A variety of ways of using this saturation and cosmic ray hit information are available to the user. The samples array becomes meaningful when one of these options is chosen.

Using Ramp Mode to Reject Cosmic Rays and Detect Saturation

Ramp mode provides processing mechanisms for the detection, and elimination of cosmic rays (CR) and for saturation detection. The optional parameter CR-ELIMINATION (see the proposal instructions) selects from four available processing modes for handling cosmic ray events. We have already described the first of these in which no action is taken, and the data returned is equivalent to a simple ACCUM exposure. Since the ramp mode computes a progressively updated variance at each sample cosmic ray events are detected by changes in slope which are more than 3 σ away from the slope determined by the previous reads. The basic principles behind cosmic ray rejection are illustrated in Figure A.4 and Figure A.5.

In the CONTINUE method, which is the default setting, when a cosmic ray is detected at a given pixel the value from that ramp sample for that pixel is eliminated from the image and variance arrays. Other pixels are unaffected by the detection. The ramp sampling then continues until the end of the exposure, removing any subsequent suspect samples in the same way on a pixel-by-pixel basis.

In the RETAIN method when a cosmic ray is detected at a given pixel, processing for that pixel is suspended and the mean pixel and variance values obtained up to the sample in which the CR hit occurred are recorded and the number of valid samples is set to that before the hit occurred. As before, other pixels are unaffected by the detection. The ramp sampling continues processing these until either they also receive a CR hit, and are themselves suspended, or the end of the exposure is reached.

In The MARK method any pixel which receives a detected CR hit is flagged as bad (set = 0) in the data quality array, but the sample in which this occurred, and all subsequent samples, are still used in the variance and pixel value calculations.

¹ The term *ramp* came from the original concept of performing an updating linear least-squares fit to the data, which was not implemented due to the limited computer power of the NICMOS computer. Over 20 seconds would be required to compute the LSQ-fit at each ramp step.
The user then has the responsibility for deciding what to do with suspect pixels during analysis.

Figure A.4 shows the ramp mode operation for an uncontaminated signal. In the top panel we see the cumulative counts with time. Marked is the time interval between ramp samples, \(t \), and the signal associated with each ramp sample. The middle panel shows a plot of the signals measured in each of the ramp samples. Since there is no cosmic ray contamination, this is essentially a constant except for statistical fluctuations. The bottom panel shows how the data quality flag would have been evaluated for each ramp sample by the flight software. In this case all samples are good.
Figure A.5 shows ramp mode operation for a signal contaminated with cosmic rays. In the top panel we again see the cumulative counts with time. Two cosmic ray events are marked. The middle panel again shows a plot of the signals measured in each of the ramp samples. Notice that the samples effected by the cosmic rays are outliers from the trend we saw in Figure A.4. The bottom panel shows how the quality flag would have been evaluated for each ramp sample by the flight software. The two samples with cosmic ray hits have been identified as bad and are not used in the final calculation of the mean signal.
Figure A.5: Ramp Mode Operation for Signal Contaminated by Cosmic Rays

RAMP mode also discontinues the processing on a pixel once the signal in the pixel reaches a level in which the deviation from linearity is > 2%. As shown in Figure A.6, the result up to that time, and the number of samples which had been collected are stored and downlinked. This can be very useful in images where the expected flux levels are not well known and in serendipitous or survey observations. Figure A.6 shows ramp mode operation for a signal which reaches the saturation or nonlinear limit prior to the end of the exposure. In the top panel we again see the cumulative counts with time. The horizontal line marks the saturation or nonlinear threshold. The bottom panel shows how the quality flag would have been evaluated for each ramp sample by the flight software. All the samples which occur after the saturation limit have been identified as bad and are not used in the final calculation of the mean signal.
Limitations of Ramp Mode

Dark Current Removal

The real science data sits on a plateau of dark current which is a varying function of time since reset (the shading effect—see Chapter 7). As this dark current varies significantly, at least in the first minute, in order to update the mean and variance without bias its contribution has to be removed. Moreover, with either or both the saturation and rejection actions turned on, each pixel can essentially have a different integration time (number of valid samples). Since the ramp mode will return an output array without the dark current removed this has to be accounted for in the subsequent data reduction, either using an empirical correction or a model. How this model is implemented is therefore crucial to the functioning of the mode as a failure to treat it properly will invalidate ramp mode data for faint sources. At present it is not clear how well this can be done. One must ensure that sufficient ramp samples are obtained in order for the ramp calculations to be reliable. Ideally this should be a number > 30, but numbers as low as 16 or so might well suffice, if the frequency of cosmic ray hits on orbit is...
not too high. Because the start of the ramp calculation has to be delayed for ~30 seconds to avoid the effects of shading ramp mode will not be useful for bright sources.

Cosmic Ray ADU Distribution Function

In an automatic sigma clipping procedure a crucial parameter is the threshold at which the rejection occurs. If this is set too high then there can be many low level cosmic rays which are not removed. With the ramp mode data it will not be possible to remove them without interpolating over them. Even detected CR hits will potentially have *halos* of distributed charge around them which might still contaminate the data if the CR hits turn out to not be confined to single pixels. This is a significant disadvantage compared to **MULTI-ACCUM** mode. More seriously if it is set too low then the underlying statistical distribution of the real events is censored invalidating the basic assumptions implicit in standard error analysis. This difficulty has led statisticians to develop robust iterative techniques for such problems. However these are computationally expensive, and require all the data to be kept in memory, so that a dynamic adjustment of the rejection criteria can take place. On board HST, the timing restriction created by the limited computing power of the flight computers eliminate this as a practical possibility.

Cosmic Rays that Won’t be Detected

Detection of cosmic rays (CR) in RAMP mode relies on discontinuities in the detected count rate for a pixel. However, three readouts are needed in order to make an estimate of the count rate. Cosmic ray hits before the fourth readout are therefore not detected. The first readout cannot occur earlier than 30 seconds into the integration, and the minimum time between readouts in RAMP mode is about 7 seconds. Therefore, the fourth readout cannot occur any sooner than 51 seconds into the integration. There is a significant probability that cosmic ray hits will occur during the first minute of an integration. These hits will not be detected or removed in RAMP mode (in **MULTI-ACCUM**, on the other hand, since all the readouts are accessible to the pipeline calibration software, cosmic rays can be detected at any stage during the integration).
A
abbreviations
 in this manual 257
 ACCUM 139
 dark current calibration 130
 data format 238
 function of 120
 minimum time 122
 mode, described 27, 121
 multiple reads 122
 overheads 135
 accumulate mode, see "ACCUM"
accuracy
 expected 243
ACQ
 data format 238
 function of 120
 mode, described 130
acronyms
 used in this manual 257
amplifier glow
 described 108
aperture
 defining 62
 NIC1 through NIC3-FIX 63
 NIC2-ACQ 68
 NIC2-CORON 68
archive
 calibrated data 231
 file formats 16
 reference files 232
array
 comparison to CCD 29
 dataset 238
 read 121
 reset 121
artifacts
 amplifier glow 108
 shading 107
association
 datasets
atomic lines 220
attached parallel 30

B
background
 ground-based 31
 infrared 31
 low sky 35
 spectroscopy 83
 stability 244
 thermal 32, 106, 137, 138, 140,
 147, 243
 zodiacal light 32
background radiation
 in exposure calculations 90
 SMOV measurements 146
bad pixels
 detector 106
 transient 62
bandpass
 see "filter"
bright object mode, see "BRIGHT-OBJ"
bright objects
 overexposure 109
BRIGHTOBJ
 data format 238
 exposure times 262
 function of 120
 mode, described 261
 overheads 135
calibration
 calnica 234
 calnicb 237
 coronography 244
 cycle 7 goals 244, 245
described 231
detector performance 244
 expected accuracy 243
 flat field 111
grists 87
 photometric 244, 252–255
 point spread function 244
 reference files 232
 software 234
 sources 245
 stars
 P330E 254
 stars, G191B2B 253
 stars, GD153 253
 stars, GD71 253
 stars, H243 253
 stars, P041-C 254
 stars, P177D 254
 unsupported modes 16
 calnica task 234
 calnicb task 237
camera
 attached parallel 30
 change, overhead 139
changing, overhead 135
coronography 67
 field of view 25
 filters 40, 161
 focus 49
 focus, NIC3 55
 image quality 49
 orientation 26
 overhead 135
 polarimetry 73
 resolution 25
 spectroscopy, camera 3 79
 camera 1 through camera 3
 see "camera" and "filter"
CCD
 compared to NICMOS array 29
chop
 described 146
 examples 153
 overhead 135
 pattern 149, 151
 size 159
 SPIRAL-DITH-CHOP 141
 TWO-CHOP 139
CO lines 220
color
 effect on sensitivity 116
coordinate system
 NICMOS 63
coronograph
 target acquisition overhead 134
coronography 19
 aperture 63
 coronographic mask 68
coronographic spot 67
described 138
expected accuracy 244
 image contrast, PSF
 centering 70
 target acquisition 68, 130
cosmic rays
 effect 110
 RAMP 266, 271
 uncertainty 243
 Cycle 7
 calibration goals 244
D
 dark current
 calibration in ACCUM or
 MULTIACCUM 130
detector 27, 106
 exposure times 131
 RAMP 270
data
 associations
 calibration process 231
 described 232, 238
 error array 239
 format 238
 integration time array 240
 quality 239
 quality flags 239
Index

readout, overhead 135
samples array 239
science dataset, structure 132
science image 239
definitions
terms used in this manual 257
detector
array reset 121
arrays 105, 108
artifacts 107
bad pixels 106
bias 121
dark current 27, 106, 130, 244
described 27, 105
DQE 106
dynamic range 106, 109
flat fields 110, 111, 116, 244
flat fields, for spectroscopy 118
flat fields, photometric
 accuracy 116, 118
flat fields, wavelength
 dependence 114, 118
intra-pixel sensitivity 110
large scale variation 111
linearity 106, 109
pixel response 110
pixel-to-pixel variation 111, 113, 116
quadrants 105
quantum efficiency 106, 115
readnoise 106, 108
readout modes 27, 119
response 106, 109, 115
saturation 106, 109
shading 29, 130, 244
dewar 22
dither
 described 146, 150
 examples 153
overhead 135
pattern 149, 150
size 159
SQUARE-WAVE-DITH 138
XSTRIP-DITH 139
documentation
World Wide Web 9

DQE 106
dynamic range
detector 106

E
EIGHT-CHOP 151
emission lines
 exposure times 92
 epsilon diagram 46
 epsilon diagrams 46, 161
error array
described 239
examples
 chop 153
 dither 153
 signal-to-noise calculation 97
exclusion
diagrams, described 48
F164N, camera 3 198
F166N, camera 3 199
F175W, camera 3 200
F187N, camera 3 201
F190N, camera 3 202
F196N, camera 3 203
F200N, camera 3 204
F212N, camera 3 205
F215N, camera 3 206
F222M, camera 3 207
F240M, camera 3 208
grisms 83-??
polarizers 76-??
exclusion curves 99
exposure (see "data" and "imaging")
exposure times
 background radiation 90, 93
BRIGHTOBJ 262
calculating 89, 94
calculating by hand, emission
 line source 101
calculating by hand, line plus
 continuum 102
calibration star 101
dark current 131
emission line contribution 92
emission line source 101
exclusion diagrams, using 99
grism observations 103
high background 98
instrument parameters 94
instrumental factors 90
line plus continuum source 102
low background 98
overhead 134
signal-to-noise, calculating 92
software tools 96
World Wide Web 96
extended source
background subtraction 147
exclusion diagrams 48
sensitivity curves 46

F
F090M through F237M
see "filter"
FAST
 overheads 135
readout mode 130
readout mode, described 121
field of view
 cameras 25
field offset mirror
 optical path 24
PSF 61
file
 data formats 16, 238
filter
 available, list of 40
 bandpasses 41, 43, 45
 camera 1 40
 camera 2 42
 camera 3 44
described 25, 40
F090M, camera 1 161
F095N, camera 1 162
F097N, camera 1 163
F108N, camera 1 164
F108N, camera 3 193
F110M, camera 1 165
F110W, camera 1 166
F110W, camera 3 194
F113N, camera 1 167
F113N, camera 3 195
F11W, camera 2 177
F140W, camera 1 168
F145M, camera 1 169
F150W, camera 3 196
F160W, camera 1 170
F160W, camera 2 178
F160W, camera 3 197
F164N, camera 1 171
F164N, camera 3 198
F165M, camera 1 172
F165M, camera 2 179
F166N, camera 1 173
F166N, camera 3 199
F170M, camera 1 174
F171M, camera 2 180
F175W, camera 3 200
F180M, camera 2 181
F187N, camera 1 175
F187N, camera 2 182
F187N, camera 3 201
F187W, camera 2 183
F190N, camera 1 176
F190N, camera 2 184
F190N, camera 3 202
F196N, camera 3 203
F200N, camera 3 204
F204M, camera 2 185
F205W, camera 2 186
F207M, camera 2 187
F212N, camera 2 188
F212N, camera 3 205
F215N, camera 2 189
F215N, camera 3 206
F216N, camera 2 190
F222M, camera 2 191
F222M, camera 3 207
F237M, camera 2 192
F240M, camera 3 208
G141 85
G206 86
leaks, out of band 48
nomenclature 40
overheads 134
POL0L 78
POL0S 77
POL120L 78
POL120S 77
POL240L 78
POL240S 77
polarimetry 76
red leaks 48
sensitivity curves, polarizers 76
spectroscopy 40.83
filter sensitivity parameters 94–95
FITS
data format, handling 241
NICMOS data format 238
flatfield
characteristics 111
response 111
flux
Jansky 211
magnitude systems 210
magnitudes, zero point 35
unit conversion 35, 211
unit conversion, examples 220
units 4, 35, 209, 211
flux calibration
standard stars 252
focus
camera 1 49
camera 2 49
camera 3 55
pupil alignment mechanism 49
FOM
see "field offset mirror"
FOUR-CHOP 151

grisms
available 44
guide star
acquisition overhead 134
reacquisition overhead 134

H
helium lines 220
Help Desk
contacting 8
high background
signal-to-noise 98
hydrogen lines 220

I
image
quality 49
imaging
described 19
filters 40, 161
polarimetry 19
sensitivity 28, 46
sensitivity limits 19
instrument 63
camera orientation 26
capabilities 26
compared to WFPC2 or STIS 26
coordinate system 63
design 20
field offset mirror 24
filters 4
optics 22
overview 3, 20
polarization 73
polarizers 73
pupil alignment mechanism 24
RAMP mode 15
setup time, overhead 134
unsupported modes 16
integration time
exclusion curves, using 99
integration time array
described 240
integration times 89

G
glow
amplifier 108
grism
analysis software 87
B continuum, F150W, camera 3 196
described 78
exposure times 103
flat fielding 118
spectroscopy 19, 78
spectroscopy, multi-object 118
L
leaks
 filters 48
Level 245
linearity
 detector 106
lines
 atomic 220
 molecular 220
low background
 signal-to-noise 98
LOW-SKY
 background option 35
M
magnitude
 CIT system 213
 flux conversion 212
 infrared system 210
 UKIRT system 213
 zero points 213
modes
 detector readout 27, 119
 unsupported 16
molecular lines 220
mosaic
 example overhead 138
 overheads 141
motion
 telescope 147
MULTIACCUM
 dark current calibration 130
 data format 240
 dynamic range 125
 function of 120
 mode, described 27, 124
 overhead 137, 139
 overheads 135
 SAMP-TIME 124
multi-object spectroscopy 80
multiple accumulate mode, see
 "MULTIACCUM"
N
NIC1 through NIC3-FIX
 see "aperture" 63
NICMOS
 see "instrument"
NICMOS-ORIENT 64
non-destructive readout 121, 125
NREAD 122
NSAMP 125, 264
O
observation
 attached parallel 30
 coronographic, planning 71
 grism, planning 81
 polarimetry, planning 75
observations
 planning 35
ONE-CHOP 151
operating mode
 overheads 134
optical elements
 filters 40, 161
 grisms 44, 78
optics
 dewar 22
OPUS (see "calibration" and
 "pipeline")
orbits
 example calculation, map 138
 example, change camera 139
 required, calculating 136
ORIENT 64
orientation
 described 64
overexposure 109
overhead 139
 camera change 135
 chopping 135
 coronography 136
 data management 135
 dithering 135
 example, camera change 139
 example, map 138, 141
 example, polarimetry 138
examples 136
exposure 134
generic 134
guide star acquisition 135
in observations 133
instrument setup 135
instrument-specific 134
observatory level 134
slews 135
overheads
POSTARG 135

P
PAM
see "pupil alignment mechanism"
parallels
attached 30
pattern
chop 141, 146
chop size 159
dither 141, 146, 150
dither size 159
EIGHT-CHOP 151
FOUR-CHOP 151
number of steps 159
ONE-CHOP 151
orient 159
overhead 139
overheads 141
parameters 159
SPIRAL-DITH 150
SQUARE-WAVE-DITH 150
TWO-CHOP 151
XSTRIP-DITH 150
YSTRIP-DITH 150
photometry
 calibration 252–255
 expected accuracy 244
pipeline
 calibration process 231
 re-engineering changes 234
point source
 background subtraction 147
 exclusion diagrams 48
 sensitivity curves 46
polarimetry 19
 example 138
 expected accuracy 244
 filters 40
 instrumental polarization 73
 polarization angle 74
 polarization degree 74
 polarized intensity 74
 sensitivity 46
 spectral coverage 40, 73
 Stokes parameters 73
polarizers
camera 1 77
camera 2 78
described 73
POSTARG 158
POSTARG 135
proposal
 instructions 7
 overheads, exposure 134
 submission process 7
 unsupported modes 16
PSF
 field offset mirror 61
pupil alignment mechanism
 focus 49
 optical path 24
Q
quality
 image 49
 quality flags array
described 239
R
RAMP
 cosmic rays 266, 271
dark current 270
data format 238
function of 120
limitations 270
readout mode, described 15, 264
saturation 266
readnoise described 108 detector 106
readout
ACCUM 122
ACQ mode 120
ACQ mode 120, 130
BRIGHTOBJ mode 120, 261
BRIGHTOBJ, exposure times 262
FAST mode 130
modes, detector 119
MULTIACCUM mode 120, 124
non-destructive 121
NSAMP 125
overhead 135
RAMP mode 120, 264
SAMP-TIME 124
SLOW mode 130
readout modes
detector 27
reference files
calibration 232
resolution
cameras 25
re-use target acquisition described 30

S
SAM
see "small angle motion" 62
samples array described 239
SAMP-TIME 124
saturation
detector 106
programs 96
RAMP 266
science image
described 239
see also "data"
sensitivities
calculating 92
sensitivity
curves 46
F090M, camera 1 161
F095N, camera 1 162
F097N, camera 1 163
F108N, camera 1 164
F108N, camera 3 193
F110M, camera 1 165
F110W, camera 1 166
F110W, camera 2 177
F110W, camera 3 194
F113N, camera 1 167
F113N, camera 3 195
F140W, camera 1 168
F150W, camera 3 196
F160W, camera 1 170
F160W, camera 2 178
F160W, camera 3 197
F164N, camera 1 171
F164N, camera 3 198
F165M, camera 1 172
F165M, camera 2 179
F166N, camera 1 173
F166N, camera 3 199
F170M, camera 1 174
F171M, camera 2 180
F175W, camera 3 200
F187N, camera 1 175
F187N, camera 2 182
F187N, camera 3 201
F187W, camera 2 183
F190N, camera 1 176
F190N, camera 2 184
F190N, camera 3 202
F196N, camera 3 203
F200N, camera 3 204
F204M, camera 2 185
F205W, camera 2 186
F207M, camera 2 187
F212N, camera 2 188
F212N, camera 3 205
F215N, camera 2 189
F215N, camera 3 206
F216N, camera 2 190
F222M, camera 2 191
F222M, camera 3 207
F237M, camera 2 192
F240M, camera 3 208
grisms 83
imaging 28
limits 19
polarizers 76
variation, intra-pixel 110
variation, wavelength 113
servicing mission observatory verification (see "SMOV") 245
shading
dark current removal 130
described 29, 107
shutter
detector reset 121
signal-to-noise
calculating 92
programs 96
signal-to-noise calculations
elements 97
sky brightness
zodiacal background 32
SLOW
overheads 135
readout mode 130
SLTV 245, 246
small angle motion 62, 159
SMOV 246
activities 248
testing 245
software
exposure times 96
grism 87
spectroscopy reduction 81
solar analog
absolute standards 253
spectroscopy 19
central wavelength 79
complex fields 81
data reduction software 87
dispersion 80
G141 85
G206 86
grism, described 78
grism, general 19
grimon, multi-object 80, 118
multi-object 80
sensitivity 46.83
spectral coverage 79
SPIRAL-DITH 150
SQUARE-WAVE-DITH 150
standard stars
calibration 253
G191B2B 253
GD153 253
GD71 253
ground-based calibration 254
H243 253
P041-C 254
P177-D 254
P330-E 254
STIS
compared to NICMOS 26
Stokes parameters
polarimetry 73
STSDAS
calibration 232
system level thermal vacuum test
(see "SLTV")

T
target acquisition
ACQ mode, described 30
aperture 62, 63
coronography 68
interactive 30
onboard 30, 130
onboard acquisition 68
overheads 134
re-use target offset 30
telescope
motion 62, 146
motion, overhead 134
small angle motion 62, 159
thermal background 32, 243
thermal vacuum test
(see "SLTV")
time
overheads 133
TWO-CHOP 151
Index

U
 units
 in Handbook 4
 see also "flux" and "wavelength"
 unsupported modes
 calibration 16
 user support
 Help Desk 8

V
 vignetting
 camera 3 59
 cameras 1 and 2 53

W
 wavelength
 sensitivity variation 113
 units 4
 WFPC2
 compared to NICMOS 26
 white dwarf
 calibration standards 253
 World Wide Web
 documents 9
 exposure time calculations 96
 grism exposure times 104
 STIS web page 9

X
 XSTRIP-DITH 150

Y
 YSTRIP-DITH 150

Z
 zodiacal light
 background 32